sinergym.utils.wrappers.LoggerWrapper
- class sinergym.utils.wrappers.LoggerWrapper(env: Any, flag: bool = True)
- __init__(env: Any, flag: bool = True)
CSVLogger to log interactions with environment.
- Parameters
env (Any) – Original Gym environment.
flag (bool, optional) – State of logger (activate or deactivate). Defaults to True.
Methods
__init__
(env[, flag])CSVLogger to log interactions with environment.
Activate logger if its flag False.
class_name
()close
()Close env.
compute_reward
(achieved_goal, desired_goal, info)Deactivate logger if its flag True.
render
([mode])Renders the environment.
reset
()Resets the environment.
seed
([seed])Sets the seed for this env's random number generator(s).
step
(action)Step the environment.
Attributes
action_space
metadata
observation_space
reward_range
spec
unwrapped
Completely unwrap this env.
- activate_logger() None
Activate logger if its flag False.
- close() None
Close env. Recording last episode summary.
- deactivate_logger() None
Deactivate logger if its flag True.
- reset() numpy.ndarray
Resets the environment. Recording episode summary in logger
- Returns
First observation given
- Return type
np.ndarray
- step(action: Union[int, numpy.ndarray]) Tuple[numpy.ndarray, float, bool, Dict[str, Any]]
Step the environment. Logging new information
- Parameters
action (Union[int, np.ndarray]) – Action executed in step
- Returns
Tuple with next observation, reward, bool for terminated episode and dict with extra information.
- Return type
Tuple[np.ndarray, float, bool, Dict[str, Any]]