sinergym.utils.callbacks.LoggerEvalCallback
- class sinergym.utils.callbacks.LoggerEvalCallback(eval_env: Union[gym.core.Env, stable_baselines3.common.vec_env.base_vec_env.VecEnv], callback_on_new_best: Optional[stable_baselines3.common.callbacks.BaseCallback] = None, n_eval_episodes: int = 5, eval_freq: int = 10000, log_path: Optional[str] = None, best_model_save_path: Optional[str] = None, deterministic: bool = True, render: bool = False, verbose: int = 1, warn: bool = True)
Callback for evaluating an agent. :param eval_env: The environment used for initialization :param callback_on_new_best: Callback to trigger when there is a new best model according to the
mean_reward
:param n_eval_episodes: The number of episodes to test the agent :param eval_freq: Evaluate the agent every eval_freq call of the callback. :param log_path: Path to a folder where the evaluations (evaluations.npz
) will be saved. It will be updated at each evaluation. :param best_model_save_path: Path to a folder where the best model according to performance on the eval env will be saved. :param deterministic: Whether the evaluation should use a stochastic or deterministic actions. :param render: Whether to render or not the environment during evaluation :param verbose: :param warn: Passed toevaluate_policy
(warns ifeval_env
has not been wrapped with a Monitor wrapper)- __init__(eval_env: Union[gym.core.Env, stable_baselines3.common.vec_env.base_vec_env.VecEnv], callback_on_new_best: Optional[stable_baselines3.common.callbacks.BaseCallback] = None, n_eval_episodes: int = 5, eval_freq: int = 10000, log_path: Optional[str] = None, best_model_save_path: Optional[str] = None, deterministic: bool = True, render: bool = False, verbose: int = 1, warn: bool = True)
Methods
__init__
(eval_env[, callback_on_new_best, ...])init_callback
(model)Initialize the callback by saving references to the RL model and the training environment for convenience.
on_rollout_end
()on_rollout_start
()on_step
()This method will be called by the model after each call to
env.step()
.on_training_end
()on_training_start
(locals_, globals_)update_child_locals
(locals_)Update the references to the local variables.
update_locals
(locals_)Update the references to the local variables.