sinergym.envs.eplus_env.EplusEnv
- class sinergym.envs.eplus_env.EplusEnv(idf_file: str, weather_file: str, variables_file: str, spaces_file: str, env_name: str = 'eplus-env-v1', discrete_actions: bool = True, weather_variability: typing.Optional[typing.Tuple[float]] = None, reward: typing.Any = <sinergym.utils.rewards.LinearReward object>, config_params: typing.Optional[typing.Dict[str, typing.Any]] = None)
Environment with EnergyPlus simulator.
- __init__(idf_file: str, weather_file: str, variables_file: str, spaces_file: str, env_name: str = 'eplus-env-v1', discrete_actions: bool = True, weather_variability: typing.Optional[typing.Tuple[float]] = None, reward: typing.Any = <sinergym.utils.rewards.LinearReward object>, config_params: typing.Optional[typing.Dict[str, typing.Any]] = None)
Environment with EnergyPlus simulator.
- Parameters
idf_file (str) – Name of the IDF file with the building definition.
weather_file (str) – Name of the EPW file for weather conditions.
variables_file (str) – Variables defined in environment to be observation and action (see sinergym/data/variables/ for examples).
spaces_file (str) – Action and observation space defined in a xml (see sinergym/data/variables/ for examples).
env_name (str, optional) – Env name used for working directory generation. Defaults to ‘eplus-env-v1’.
discrete_actions (bool, optional) – Whether the actions are discrete (True) or continuous (False). Defaults to True.
weather_variability (Optional[Tuple[float]], optional) – Tuple with sigma, mu and tao of the Ornstein-Uhlenbeck process to be applied to weather data. Defaults to None.
reward (Any, optional) – Reward function instance used for agent feedback. Defaults to LinearReward().
config_params (Optional[Dict[str, Any]], optional) – Dictionary with all extra configuration for simulator. Defaults to None.
Methods
__init__
(idf_file, weather_file, ...[, ...])Environment with EnergyPlus simulator.
close
()End simulation.
render
([mode])Environment rendering.
reset
()Reset the environment.
seed
([seed])Sets the seed for this env's random number generator(s).
step
(action)Sends action to the environment
Attributes
action_space
observation_space
reward_range
spec
unwrapped
Completely unwrap this env.
- close() None
End simulation.
- metadata = {'render.modes': ['human']}
- render(mode: str = 'human') None
Environment rendering.
- Parameters
mode (str, optional) – Mode for rendering. Defaults to ‘human’.
- reset() numpy.ndarray
Reset the environment.
- Returns
Current observation.
- Return type
np.ndarray
- step(action: Union[int, float, numpy.integer, numpy.ndarray, List[Any], Tuple[Any]]) Tuple[numpy.ndarray, float, bool, Dict[str, Any]]
Sends action to the environment
- Parameters
action (Union[int, float, np.integer, np.ndarray, List[Any], Tuple[Any]]) – Action selected by the agent.
- Returns
Observation for next timestep, reward obtained, Whether the episode has ended or not and a dictionary with extra information
- Return type
Tuple[np.ndarray, float, bool, Dict[str, Any]]